FedWCM: Unleashing the Potential of Momentumbased Federated Learning in Long-Tailed Scenarios

Tianle Li^{1*}, Yongzhi Huang^{2*},

Linshan Jiang³, Qipeng Xie², Chang Liu⁴, Wenfeng Du¹, Lu Wang¹ and Kaishun Wu²

¹Shenzhen University

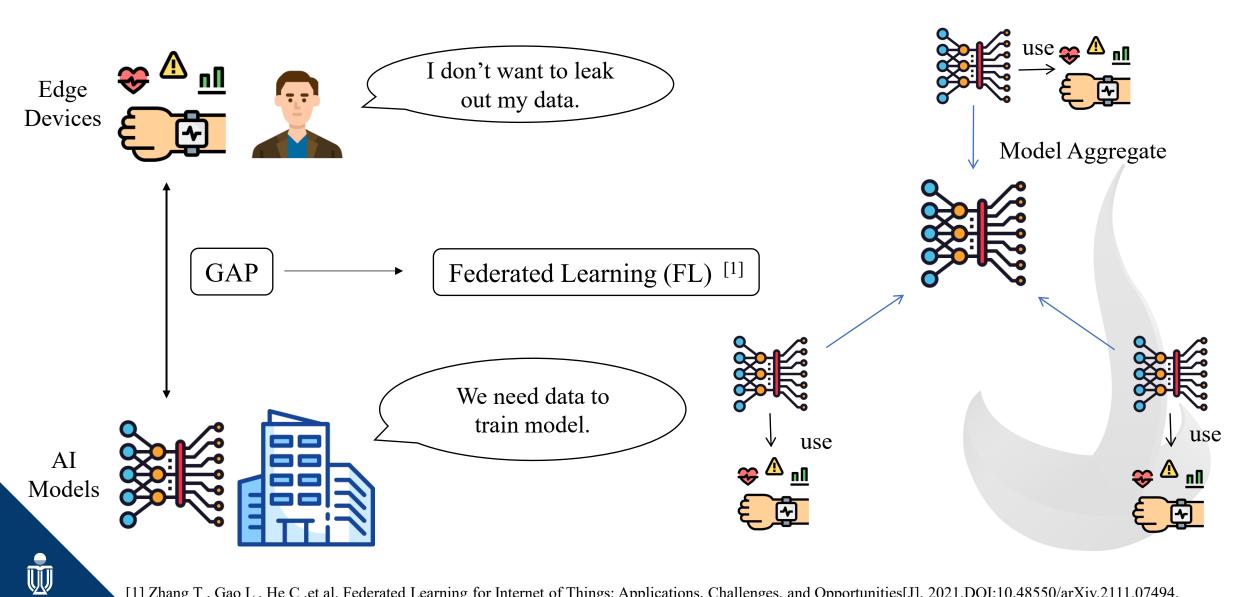
²The Hong Kong University of Science and Technology (Guangzhou)

³National University of Singapore

⁴Nanyang Technological University

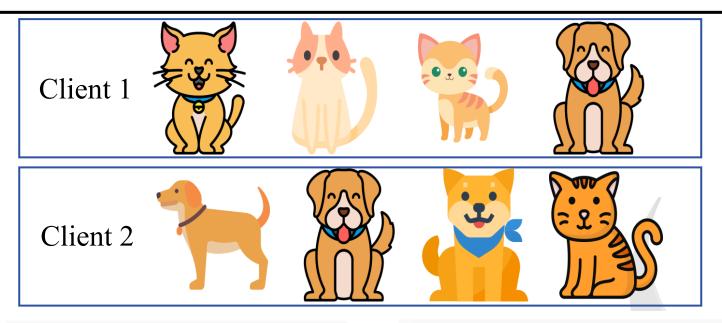
* Equal Contribution

Motivation: Edge Intelligence Needs FL

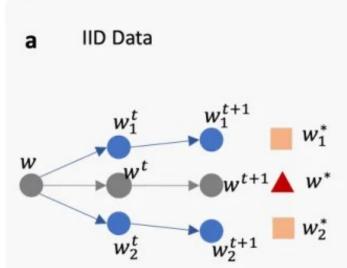


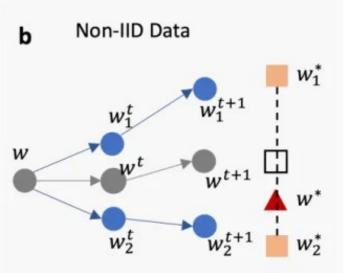
Big headache in FL: Heterogeneity

Heterogeneity

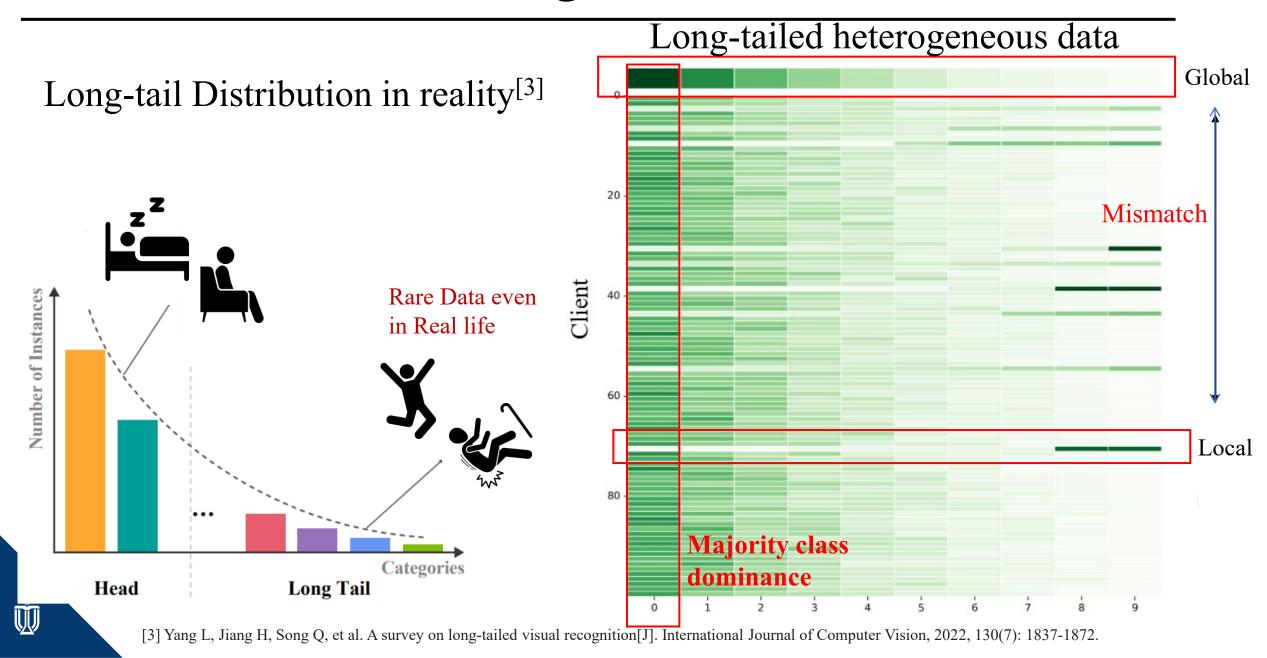


Client Drift^[2]





The extreme case: Long-tail Distribution



Existing Approaches for Heterogeneity & Long-Tail

Federated Long-tailed (Local Corrector)

Calibrate classifiers, two-stage learning

Local-global Distributions misaligned

Federated Long-tailed (Global Corrector)

FedGrab^[4], CLIP2FL^[5], Creff^[6]

Only correct the imbalance without speeding up

How to make FL both fast and fair under Heterogeneity & Long-Tail?

Long-Tail

Heterogeneity

Centralized Long-tailed Approaches

Data layer: Enhancement, Balanced sampling

Training layer: Balance loss, Focal loss,

Distribution-aware loss

Lost too much information in the client side

Why not introduce Momentum?

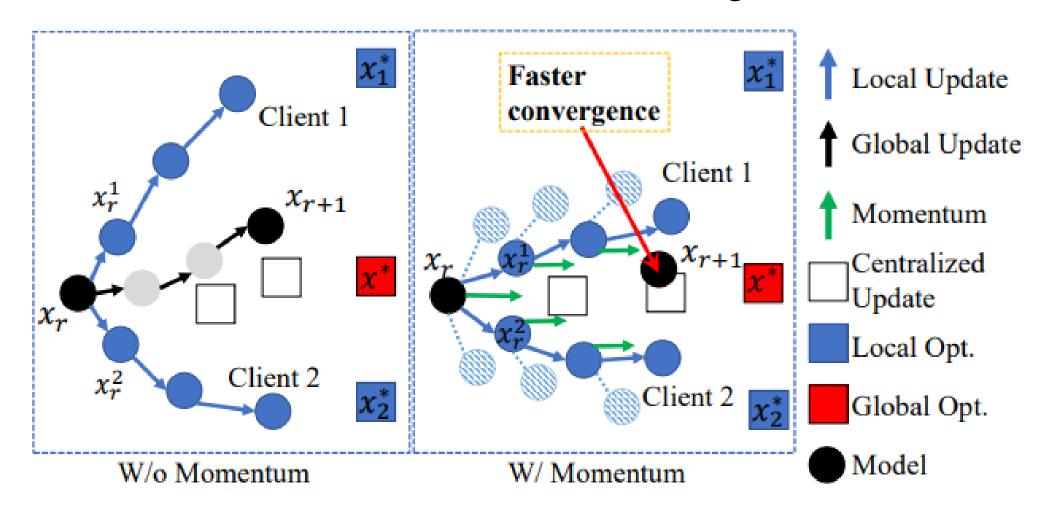
Heterogeneity Approaches

FedAvg, Scaffold, FedPro

Do not tackle the class imbalance

Momentum: A Powerful Accelerator

Momentum can stabilize and accelerate training^{[7][8]}



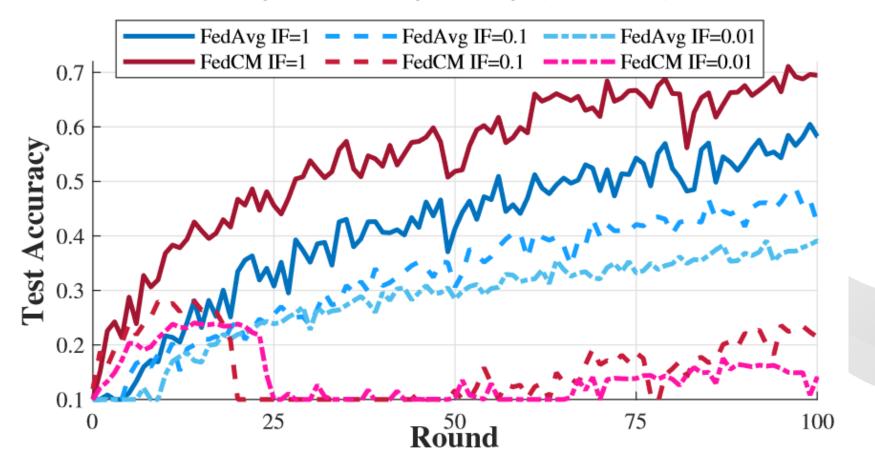
But

It is a Double-Edged Sword.

$$IF = \frac{Least}{Most}$$

Distributed momentum, FedCM (in red series)

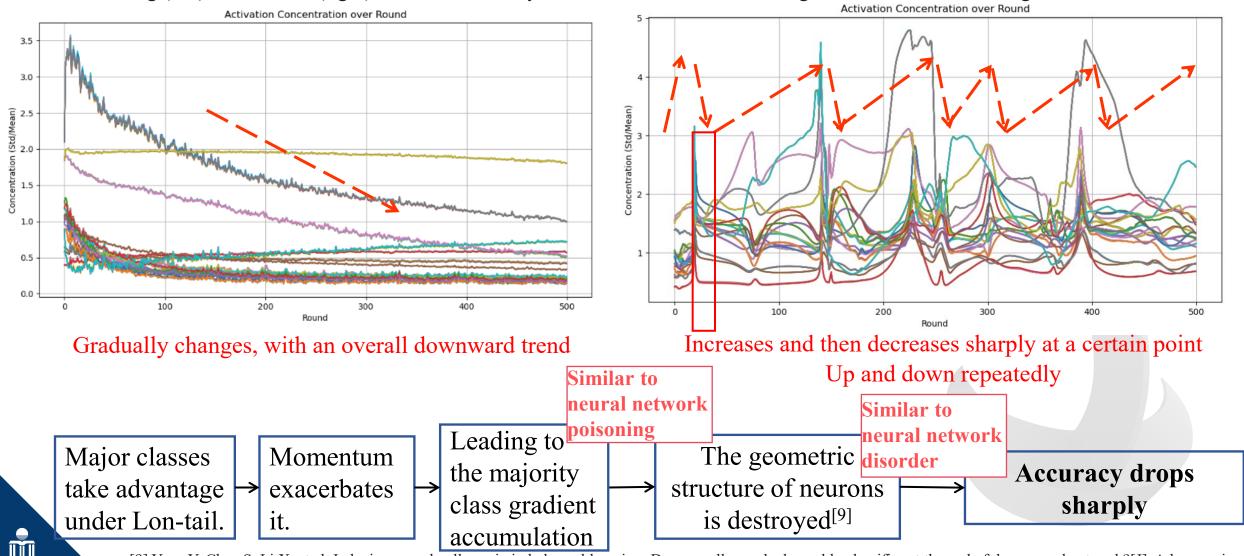
- 1. Fast convergence and high accuracy when the long tail is low (IF=1)
- 2. Failure to converge when the long tail is high (IF=0.1, 0.01)



Why fail to converge?

Illustration: The Minority Collapse (Micro)

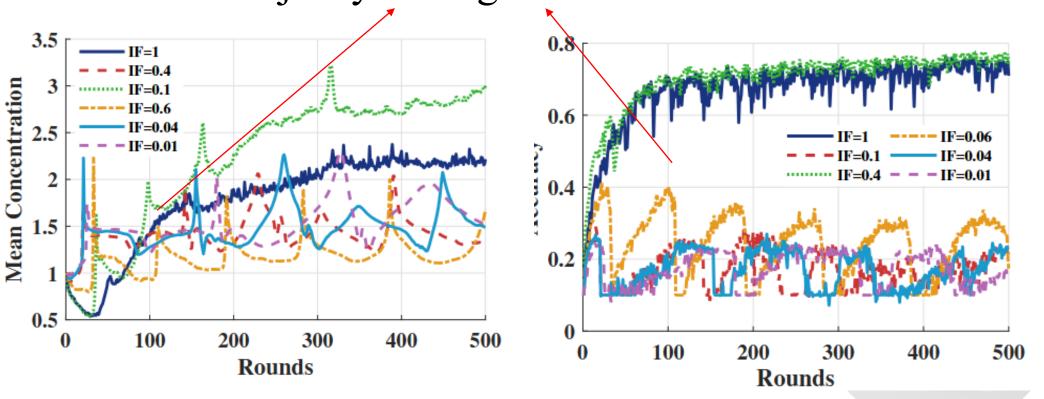
FedAvg (left) and FedCM (right) neural network layers' neuron concentration changes with rounds under long-tail distribution



[9] Yang Y, Chen S, Li X, et al. Inducing neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural network?[J]. Advances in neural information processing systems, 2022, 35: 37991-38002.

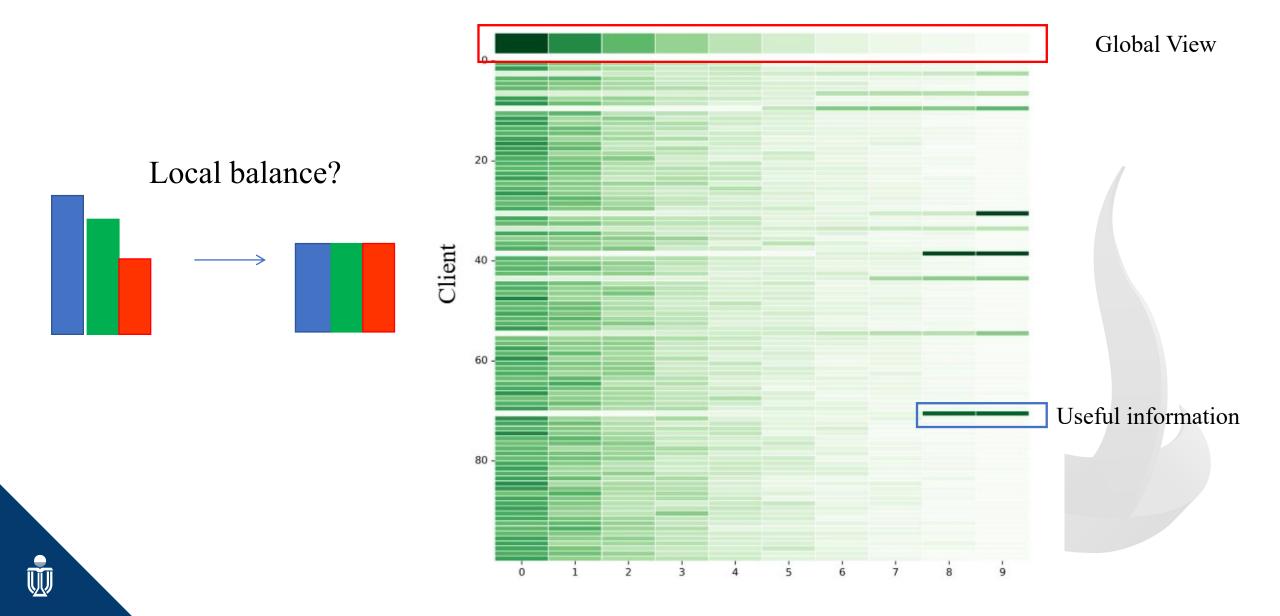
Illustration: The Minority Collapse (Macro)

Minority Collapse^[10] caused by majority class gradient accumulation.

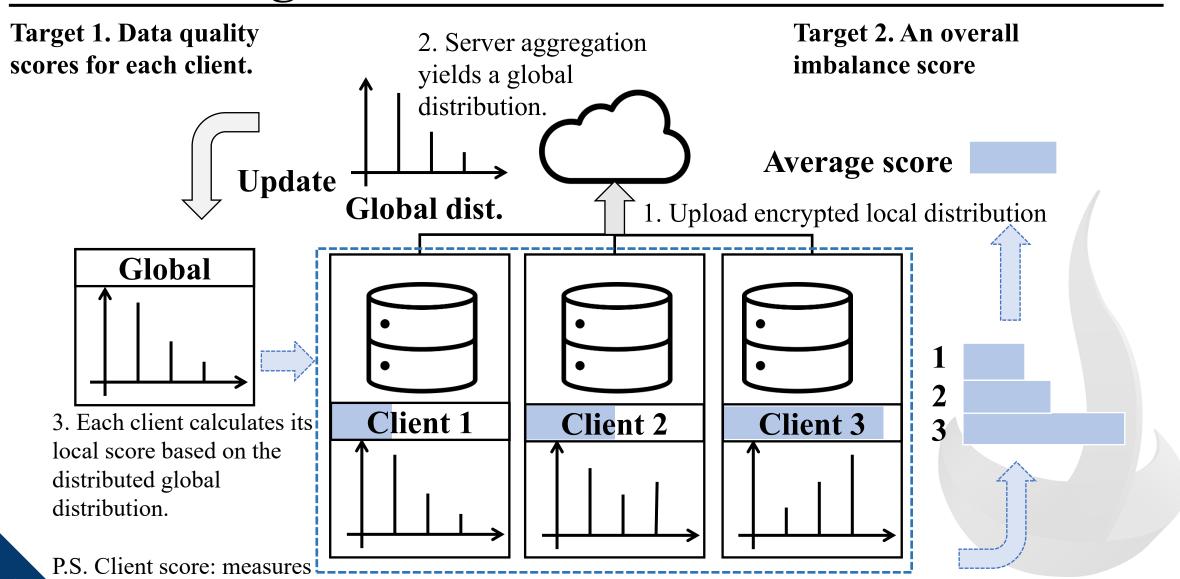


[10] Fang C, He H, Long Q, et al. Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training[J]. Proceedings of the National Academy of Sciences, 2021, 118(43): e2103091118.

Why Not Just Fix Locally?



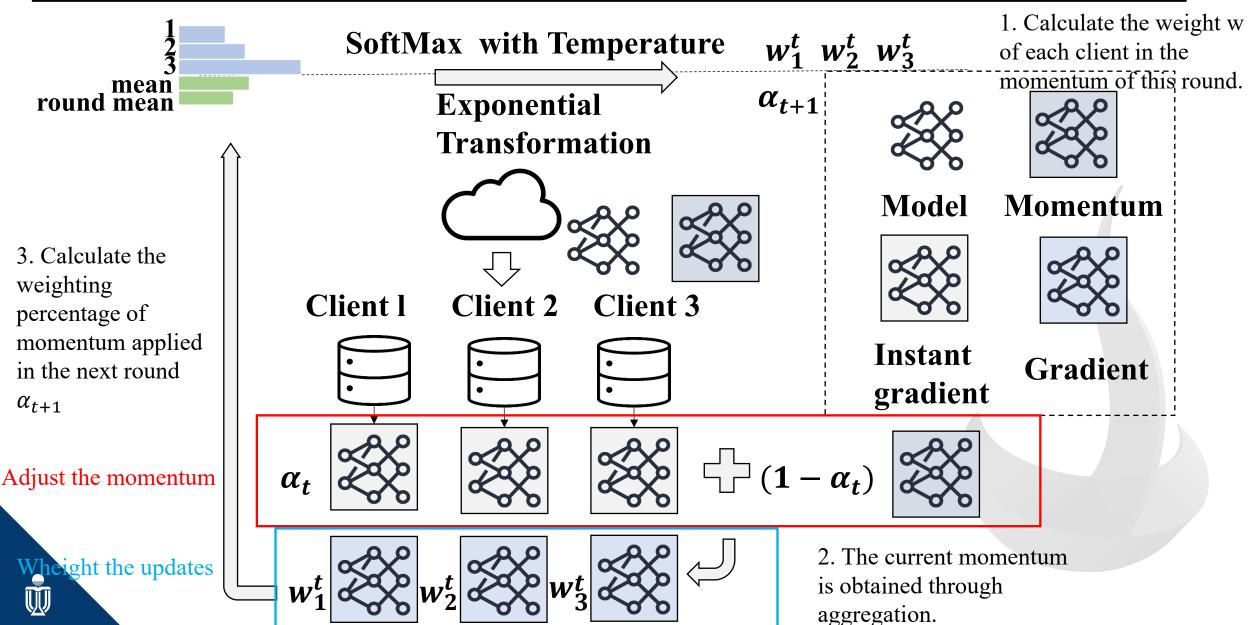
Obtaining the Global Distribution



the difference from a

uniform distribution.

Our Solution: Weighted Client Momentum (FedWCM)



Method: How FedWCM Works

FedWCM workflow:

- 1. Estimate the global distribution.
- 2. Score each client how much do they help the minority classes?
- 3. Aggregate their momentum with these scores.
- 4. Adjust the weight of momentum application for the next round

Algorithm 1 FedWCM Algorithm

```
Require: initial model x_0, global momentum \Delta_0, \alpha_0 = 0.1, learn-
ing rates \eta_l, \eta_q, number of rounds R, local iterations B
Compute \{s_k\} with D_q using Equation (3)
for r = 0 to R - 1 do
     Sample subset \mathcal{P}_r of clients
     for Each client k \in \mathcal{P}_r do
          x_{0,k}^r = x_r
          for b = 0 to B - 1 do
               Compute g_{b,k}^r = \nabla f_k(x_{b,k}^r, D_{b,k})
               v_{b,k}^r = \alpha_r g_{b,k}^r + (1 - \alpha_r) \Delta_r \quad 4
               x_{b+1,k}^r = x_{b,k}^r - \eta_l v_{b,k}^r
          end for
          \Delta_k^r = x_{B.k}^r - x_r
     end for
     Compute w_k^r using Equation (4)
     Compute \alpha_{r+1} using Equation (5)
    \Delta_{r+1} = \frac{1}{n_I B} \sum_{k \in \mathcal{P}_r} w_k^r \Delta_k^r \quad 3
     x_{r+1} = x_r - \eta_g \Delta_{r+1}
end for
```

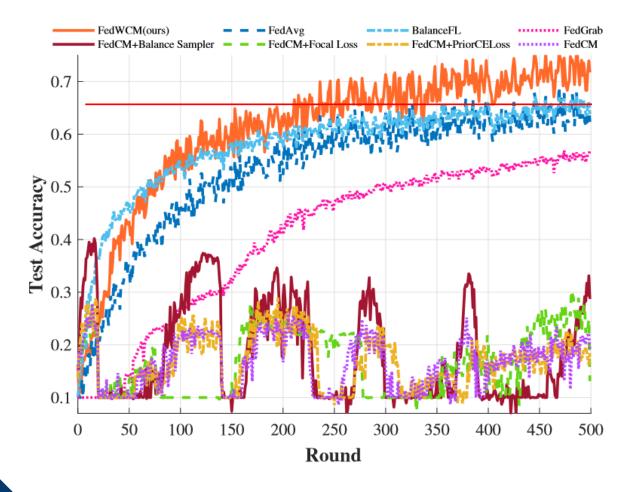

Results: Higher Accuracy and Covergence

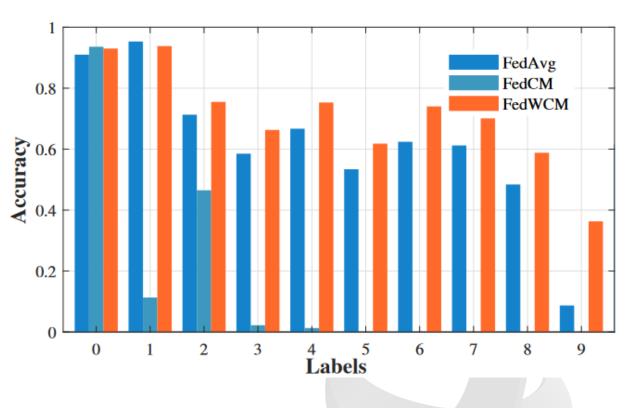
Federated long-tail Method

Centralized Long Tail Improvement

		FedAvg		BalanceFL		FedCM		FedCM + Focal Loss		FedCM + Balance Loss		FedCM + Balance Sampler		FedWCM	
Dataset	IF	0.6	0.1	0.6	0.1	0.6	0.1	0.6	0.1	0.6	0.1	0.6	0.1	0.6	0.1
Fashion-MNIST	1 0.5 0.1 0.05 0.01	0.8800 0.8688 0.8450 0.8318 0.7871	0.8074 0.8079 0.8313 0.8408 0.7894	0.8795 0.8638 0.8497 0.8520 0.8192	0.8443 0.8462 0.8475 0.8545 0.8126	$\begin{array}{c} 0.8419 \\ 0.8601 \\ 0.8211 \\ \underline{0.3914} \\ 0.7378 \end{array}$	0.7604 0.8544 0.8268 <u>0.4975</u> 0.7524	$\begin{array}{c} 0.8246 \\ 0.8363 \\ 0.8161 \\ \underline{0.1945} \\ 0.7188 \end{array}$	0.6931 0.7058 0.8065 <u>0.1967</u> 0.7265	0.7451 0.7622 0.7873 <u>0.4335</u> 0.8039	$\begin{array}{c} 0.6907 \\ 0.6737 \\ 0.8002 \\ \underline{0.4064} \\ 0.8011 \end{array}$	0.8546 0.8476 0.8245 <u>0.5474</u> 0.8027	0.7821 0.7906 0.8252 <u>0.5273</u> 0.8030	0.8625 0.8659 0.8469 0.8499 0.7882	0.8181 0.8366 0.8328 0.8426 0.7947
SVHN	1 0.5 0.1 0.05 0.01	0.9361 0.9251 0.8681 0.8594 0.7884	0.8986 0.9271 0.8741 0.8647 0.7803	0.9370 0.9261 0.8979 0.8675 0.7901	0.9146 0.9243 0.8976 0.8709 0.7954	$\begin{array}{c} 0.9246 \\ 0.7137 \\ 0.1594 \\ \hline 0.3100 \\ \hline 0.0670 \end{array}$	$\begin{array}{c} 0.8836 \\ 0.6981 \\ \underline{0.0670} \\ \underline{0.0723} \\ \underline{0.0670} \end{array}$	$\begin{array}{c} 0.9242 \\ 0.6068 \\ \underline{0.1959} \\ \underline{0.0670} \\ \underline{0.0670} \end{array}$	$\begin{array}{c} 0.8749 \\ 0.5961 \\ 0.1959 \\ \hline 0.1107 \\ \hline 0.0751 \end{array}$	$\begin{array}{c} 0.8928 \\ 0.5594 \\ \underline{0.0762} \\ \underline{0.0969} \\ \underline{0.0760} \end{array}$	$\begin{array}{c} 0.8312 \\ 0.5870 \\ \underline{0.1322} \\ \underline{0.0909} \\ \underline{0.0759} \end{array}$	0.9310 0.7085 0.1959 0.1802 0.1736	$\begin{array}{c} 0.8911 \\ 0.6761 \\ \underline{0.1976} \\ \underline{0.0932} \\ \underline{0.2427} \end{array}$	0.9355 0.9324 0.9057 0.8759 0.7998	0.9276 0.9284 0.9024 0.8836 0.8408
CIFAR-10	1 0.5 0.1 0.05 0.01	0.7906 0.7535 0.6232 0.5715 0.4567	0.6881 0.7183 0.6775 0.5642 0.4600	0.7629 0.7539 0.6380 0.5652 0.4731	0.6813 0.7429 0.6541 0.5535 0.4616	0.8126 0.6793 0.2175 0.2274 0.1865	$\begin{array}{c} 0.7092 \\ 0.6686 \\ \underline{0.2393} \\ \underline{0.2358} \\ \underline{0.2312} \end{array}$	0.8040 0.6565 0.1311 0.2005 0.1687	$\begin{array}{c} 0.6937 \\ 0.6319 \\ \underline{0.3095} \\ \underline{0.1413} \\ \underline{0.2023} \end{array}$	$\begin{array}{c} 0.7931 \\ 0.6877 \\ \underline{0.1864} \\ \underline{0.2680} \\ \underline{0.2087} \end{array}$	$\begin{array}{c} 0.7169 \\ 0.6924 \\ \underline{0.3016} \\ \underline{0.2525} \\ \underline{0.2405} \end{array}$	0.8065 0.6968 0.2871 0.1427 0.1249	$\begin{array}{c} 0.7198 \\ 0.6590 \\ \underline{0.3994} \\ \underline{0.1315} \\ \underline{0.1584} \end{array}$	0.8242 0.7926 0.6905 0.6006 0.4983	0.7337 0.7968 0.7207 0.6132 0.5012
CIFAR-100	1 0.5 0.1 0.05 0.01	0.4297 0.3545 0.2839 0.2155 0.1663	0.3731 0.3882 0.2744 0.2300 0.1885	0.3691 0.3203 0.2440 0.2070 0.1565	0.3232 0.3639 0.2407 0.2157 0.1609	0.4129 0.2996 0.2948 0.1130 0.0116	0.2400 0.4200 0.3135 0.2695 0.1035	0.3990 0.3058 0.3014 0.0100 0.0109	0.2357 0.3853 0.3166 0.2806 0.1027	0.3630 0.2694 0.2952 <u>0.1000</u> <u>0.0100</u>	0.2089 0.3722 0.3156 0.2786 0.1286	0.3599 0.2835 0.2952 0.0930 0.0100	0.2339 0.3790 0.2955 0.2721 0.0723	0.4545 0.4195 0.3150 0.2573 0.1985	0.3858 0.4202 0.3235 0.2832 0.2005
ImageNet	1 0.5 0.1 0.05 0.01	0.2760 0.2154 0.1631 0.1458 0.0882	0.2290 0.2140 0.1535 0.1355 0.1123	0.2292 0.1628 0.1124 0.0915 0.0627	0.1947 0.2124 0.1161 0.0998 0.0612	$\begin{array}{c} 0.2479 \\ \underline{0.1045} \\ 0.1796 \\ \underline{0.0052} \\ \underline{0.0050} \end{array}$	$\begin{array}{c} \underline{0.1408} \\ \underline{0.0392} \\ 0.1738 \\ 0.1597 \\ 0.1137 \end{array}$	0.2438 0.0923 0.1864 0.1355 0.0063	$\begin{array}{c} \underline{0.1222} \\ \underline{0.0695} \\ 0.1763 \\ 0.1448 \\ 0.1354 \end{array}$	0.2082 0.0928 0.1796 0.1471 0.0050	$\begin{array}{c} \underline{0.1024} \\ \underline{0.0544} \\ 0.1788 \\ 0.1576 \\ 0.1209 \end{array}$	0.2134 0.1154 0.1528 0.1130 0.0052	0.1155 0.1067 0.1521 0.1542 0.1217	0.3094 0.2598 0.1923 0.1626 0.0974	0.2462 0.2198 0.1874 0.1660 0.1383

Efficiency: Faster Covergence and Fairness

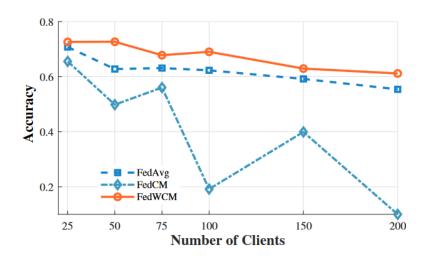




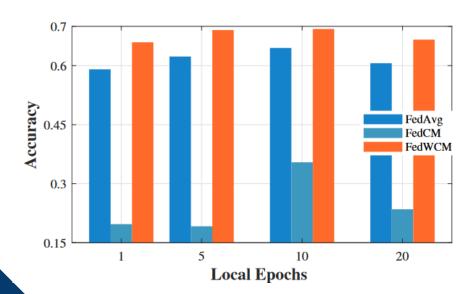
Overall performance comparison

Per-label accuracy

Robustness: Stable under Diverse Conditions



Sampling Rate	FedAvg	FedCM	FedWCM
5%	0.6865	0.3130	0.7127
10%	0.6232	$\overline{0.1918}$	0.6905
20%	0.6450	$\overline{0.3006}$	0.7164
40%	0.6418	0.2268	0.6933
80%	0.6441	0.1000	0.6980



$\beta = 0.1$	IF	1	0.4	0.1	0.06	0.04	0.01
FedAvg		0.6859	0.7059	0.6228	0.6295	0.5358	0.4838
FedCM		0.7179	0.7394	0.2346	0.2077	0.2206	0.2283
FedWCM		0.7337	0.7735	0.6629	0.6538	0.5972	0.5078
$\beta = 0.6$	IF	1	0.4	0.1	0.06	0.04	0.01
FedAvg		0.7912	0.7294	0.6232	0.5801	0.5543	0.4637
FedCM		0.8104	0.7363	0.1918	0.2616	0.1894	0.2399
FedWCM		0.8426	0.7969	0.6905	0.6216	0.6042	0.5164

Privacy Concerns

Homomorphic encryption^[11]

- **1. Key Generation:** The server picks one client to generate a key pair and share the public key with all clients.
- **2. Encrypted Upload:** Each client encrypts its local class counts and sends them to the server.
- **3. Aggregation & Decryption:** The server aggregates the encrypted counts and sends the result back to the key-owning client, who decrypts it and uploads the global statistics to the server.

One-time overhead from encryption

User	Plaintext (Byte)	Ciphertext (Byte)
10	136	88556
20	216	88554
50	456	88631
100	856	88548
150	1256	88576

Table 2: Plaintext and ciphertext values for different users.

Conclusion and Outlook

- 1. Problem: Heterogeneity + long-tail → hard for federated learning
- 2. Accelator: Momentum is fast, but can fail under extreme imbalance
- 3. Our method: FedWCM:
- ➤ keeps speed ✓
- > prevents collapse 💢
- > protects minority classes
- 4. Result: Momentum: simple & efficient → huge potential
- 5. Future: explore new domains 🗱

Thank you!

yhuang849@connect.hkust-gz.edu.cn

